• Meetings
  • About
  • Collaborators
    • Research Exchange
  • Methods
    • Calibration Gas
    • Materials to Avoid
    • Flasks
  • Data

Here is a collection of articles on carbonyl sulfide research.  
For a topic-specific, chronological list, use the drop-down menu under Literature.
Global/Continental-scale Measurements and Modeling Efforts


Campbell, J. E., Whelan, M. E., Seibt, U., Smith, S. J., Berry, J. A. and Hilton, T. W.: Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints, Geophys. Res. Lett., doi:10.1002/2015GL063445, 2015.




Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D. and Zhu, Z.: A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle, J. Geophys. Res. Biogeosciences, 118(2), 842–852, doi:10.1002/jgrg.20068, 2013.

Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L. and Stanier, C. O.: Photosynthetic control of atmospheric carbonyl sulfide during the growing season, Science, 322(5904), 1085–1088, doi:10.1126/science.1164015, 2008.

Blake, N. J., Campbell, J. E., Vay, S. A., Fuelberg, H. E., Huey, L. G., Sachse, G., Meinardi, S., Beyersdorf, A., Baker, A., Barletta, B., Midyett, J., Doezema, L., Kamboures, M., McAdams, J., Novak, B., Rowland, F. S. and Blake, D. R.: Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2, J. Geophys. Res. Atmospheres, 113(D9), D09S90, doi:10.1029/2007JD009163, 2008.



Suntharalingam, P., Kettle, A. J., Montzka, S. M. and Jacob, D. J.: Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake, Geophys. Res. Lett., 35(19), doi:10.1029/2008GL034332, 2008.



Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P. and Sweeney, C.: On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2, J Geophys Res Atmos, 112, doi:10.1029/2006JD007665, 2007.



Sandoval-Soto, L., Stanimirov, M., Von Hobe, M., Schmitt, V., Valdes, J., Wild, A. and Kesselmeier, J.: Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2), Biogeosciences, 2(2), 125–132, doi:10.5194/bg-2-125-2005, 2005.



Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. and Andreae, M. O.: Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res. Atmospheres, 107(D22), 1–16, doi:10.1029/2002JD002187, 2002.

Ice Core Records
Aydin, M., Fudge, T. J., Verhulst, K. R., Nicewonger, M. R., Waddington, E. D. and Saltzman, E. S.: Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years, J. Geophys. Res. Atmospheres, 119(13), 2014JD021618, doi:10.1002/2014JD021618, 2014.

Aydin, M., Williams, M. B., Tatum, C. and Saltzman, E. S.: Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos Chem Phys, 8(24), 7533–7542, doi:10.5194/acp-8-7533-2008, 2008.

Montzka, S. A., Aydin, M., Battle, M., Butler, J. H., Saltzman, E. S., Hall, B. D., Clarke, A. D., Mondeel, D. and Elkins, J. W.: A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice, J. Geophys. Res. Atmospheres, 109(D22), doi:10.1029/2004JD004686, 2004.

Aydin, M., De Bruyn, W. J. and Saltzman, E. S.: Preindustrial atmospheric carbonyl sulfide (OCS) from an Antarctic ice core, Geophys. Res. Lett., 29(9), 73–1–73–4, doi:10.1029/2002GL014796, 2002.

Sturges, W. T., Penkett, S. A., Barnola, J.-M., Chappellaz, J., Atlas, E. and Stroud, V.: A long-term record of carbonyl sulfide (COS) in two hemispheres from firn air measurements, Geophys. Res. Lett., 28(21), 4095–4098, doi:10.1029/2001GL013958, 2001.

Reviews
Wohlfahrt, G., Brilli, F., Hörtnagl, L., Xu, X., Bingemer, H., Hansel, A. and Loreto, F.: Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations, Plant Cell Environ., 35(4), 657–667, doi:10.1111/j.1365-3040.2011.02451.x, 2012.

Brimblecombe, P.: The Global Sulfur Cycle, in Treatise in Geochemistry, vol. 8, edited by H. D. Holland and Turekian, pp. 645–682., 2003.

Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmos. Environ., 34(5), 761–779, doi:10.1016/S1352-2310(99)00342-8, 2000.


Eddy Flux Covariance

Billesbach, D. P., Berry, J. A., Seibt, U., Maseyk, K., Torn, M. S., Fischer, M. L., Abu-Naser, M. and Campbell, J. E.: Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in Southern Great Plains winter wheat, Agric. For. Meteorol., 184, 48–55, doi:10.1016/j.agrformet.2013.06.007, 2014.



Maseyk, K., Berry, J. A., Billesbach, D., Campbell, J. E., Torn, M. S., Zahniser, M. and Seibt, U.: Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains, Proc. Natl. Acad. Sci., 111(25), 9064–9069, doi:10.1073/pnas.1319132111, 2014.



Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A. and Yakir, D.: Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux, Nat. Geosci., 6(3), 186–190, doi:10.1038/ngeo1730, 2013.



Atmospheric Gradient / Tower measurements

Commane, R., Herndon, S. C., Zahniser, M. S., Lerner, B. M., McManus, J. B., Munger, J. W., Nelson, D. D. and Wofsy, S. C.: Carbonyl sulfide in the planetary boundary layer: Coastal and continental influences, J. Geophys. Res. Atmospheres, 118(14), 8001–8009, doi:10.1002/jgrd.50581, 2013.



Belviso, S., Schmidt, M., Yver, C., Ramonet, M., Gros, V. and Launois, T.: Strong similarities between night-time deposition velocities of carbonyl sulphide and molecular hydrogen inferred from semi-continuous atmospheric observations in Gif-sur-Yvette, Paris region, Tellus B, 65(0), doi:10.3402/tellusb.v65i0.20719, 2013.

Blonquist, J. M., Montzka, S. A., Munger, J. W., Yakir, D., Desai, A. R., Dragoni, D., Griffis, T. J., Monson, R. K., Scott, R. L. and Bowling, D. R.: The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites, J. Geophys. Res. Biogeosciences, 116, 1–18, doi:10.1029/2011JG001723, 2011.



Berresheim, H. and Vulcan, V. D.: Vertical distributions of COS, CS2, DMS and other sulfur compounds in a loblolly pine forest, Atmospheric Environ. Part Gen. Top., 26(11), 2031–2036, doi:10.1016/0960-1686(92)90087-2, 1992.

Modeling Soil Fluxes
Ogée, J., Sauze, J., Kesselmeier, J., Genty, B., Van Diest, H., Launois, T. and Wingate, L.: A new mechanistic framework to predict OCS fluxes from soils, Biogeosciences Discuss, 12(18), 15687–15736, doi:10.5194/bgd-12-15687-2015, 2015.

Whelan, M. E., Hilton, T. W., Berry, J. A., Berkelhammer, M., Desai, A. R. and Campbell, J. E.: Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake, Atmos Chem Phys Discuss, 15(15), 21095–21132, doi:10.5194/acpd-15-21095-2015, 2015.

Sun, W., Maseyk, K., Lett, C. and Seibt, U.: A soil diffusion–reaction model for surface COS flux: COSSM v1, Geosci Model Dev, 8(10), 3055–3070, doi:10.5194/gmd-8-3055-2015, 2015.

Leaf/Soil Chamber Measurements


Berkelhammer, M., Asaf, D., Still, C., Montzka, S., Noone, D., Gupta, M., Provencal, R., Chen, H. and Yakir, D.: Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide, Glob. Biogeochem. Cycles, 28(2), 161–179, doi:10.1002/2013GB004644, 2014.




Whelan, M. E., Min, D.-H. and Rhew, R. C.: Salt marshes as a source of atmospheric carbonyl sulfide, Atmos. Environ., 73, 131–137, doi:10.1016/j.atmosenv.2013.02.048, 2013.


Yi, Z., Wang, X., Sheng, G. and Fu, J.: Exchange of carbonyl sulfide (OCS) and dimethyl sulfide (DMS) between rice paddy fields and the atmosphere in subtropical China, Agric. Ecosyst. Environ., 123(1–3), 116–124, doi:10.1016/j.agee.2007.05.011, 2008.

Li, X., Liu, J. and Yang, J.: Variation of H2S and COS emission fluxes from Calamagrostis angustifolia Wetlands in Sanjiang Plain, Northeast China, Atmos. Environ., 40(33), 6303–6312, doi:10.1016/j.atmosenv.2006.05.054, 2006.


Geng, C. and Mu, Y.: Carbonyl sulfide and dimethyl sulfide exchange between trees and the atmosphere, Atmos. Environ., 40(7), 1373–1383, doi:10.1016/j.atmosenv.2005.10.023, 2006.

Geng, C. and Mu, Y.: Carbonyl sulfide and dimethyl sulfide exchange between lawn and the atmosphere, J. Geophys. Res. Atmospheres, 109(D12), D12302, doi:10.1029/2003JD004492, 2004.

Steinbacher, M., Bingemer, H. G. and Schmidt, U.: Measurements of the exchange of carbonyl sulfide (OCS) and carbon disulfide (CS2) between soil and atmosphere in a spruce forest in central Germany, Atmos. Environ., 38(35), 6043–6052, 2004.

Xu, X., Bingemer, H. G. and Schmidt, U.: The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest, Atmospheric Chem. Phys. Discuss., 2(1), 181–212, 2002.

DeLaune, R. D., Devai, I. and Lindau, C. W.: Flux of reduced sulfur gases along a salinity gradient in Louisiana coastal marshes, Estuar. Coast. Shelf Sci., 54(6), 1003–1011, 2002.

Kuhn, U., Ammann, C., Wolf, A., Meixner, F. X., Andreae, M. O. and Kesselmeier, J.: Carbonyl sulfide exchange on an ecosystem scale: soil represents a dominant sink for atmospheric COS, Atmos. Environ., 33(6), 995–1008, 1999.

Simmons, J. S.: Consumption of atmospheric carbonyl sulfide by coniferous boreal forest soils, J. Geophys. Res., 104(D9), 11569–11576, doi:10.1029/1999JD900149, 1999.

De Mello, W. Z. and Hines, M. E.: Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum peatlands: Implications for the magnitude and direction of flux, J. Geophys. Res., 99(D7), 14601–14607, 1994.

Chin, M. and Davis, D. D.: Global sources and sinks of OCS and CS2 and their distributions, Glob. Biogeochem. Cycles, 7(2), 321–337, doi:10.1029/93GB00568, 1993.

Kesselmeier, J. and Merk, L.: Exchange of carbonyl sulfide (COS) between agricultural plants and the atmosphere: Studies on the deposition of COS to peas, corn and rapeseed, Biogeochemistry, 23(1), 47–59, doi:10.1007/BF00002922, 1993.

Castro, M. S. and Galloway, J. N.: A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere, J. Geophys. Res., 96(D8), 15427–15, 1991.

Lab-based soil/litter/lichen measurements

Whelan, M. and Rhew, R.: Carbonyl sulfide produced by abiotic thermal and photo-degradation of soil organic matter from wheat field substrate, J. Geophys. Res. Biogeosciences, 2014JG002661, doi:10.1002/2014JG002661, 2015.



Van Diest, H. and Kesselmeier, J.: Soil atmosphere exchange of carbonyl sulfide (COS) regulated by diffusivity depending on water-filled pore space, Biogeosciences, 5(2), 475–483, doi:10.5194/bg-5-475-2008, 2008.



Liu, J., Geng, C., Mu, Y., Zhang, Y., Xu, Z. and Wu, H.: Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China, Biogeosciences, 7(2), 753–762, doi:10.5194/bg-7-753-2010, 2010.

Kesselmeier, J. and Hubert, A.: Exchange of reduced volatile sulfur compounds between leaf litter and the atmosphere, Atmos. Environ., 36(29), 4679–4686, doi:10.1016/S1352-2310(02)00413-2, 2002.

Conrad, R. and Meuser, K.: Soils contain more than one activity consuming carbonyl sulfide, Atmos. Environ., 34(21), 3635–3639, doi:10.1016/S1352-2310(00)00136-9, 2000.
paired with
Lehmann, S. and Conrad, R.: Characteristics of turnover of carbonyl sulfide in four different soils, J. Atmospheric Chem., 23(2), 193–207, doi:10.1007/BF00048260, 1996.

Kuhn, U. and Kesselmeier, J.: Environmental variables controlling the uptake of carbonyl sulfide by lichens, J. Geophys. Res. Atmospheres, 105(D22), 26783–26792, doi:10.1029/2000JD900436, 2000.



Kesselmeier, J., Teusch, N. and Kuhn, U.: Controlling variables for the uptake of atmospheric carbonyl sulfide by soil, J. Geophys. Res., 104(D9), 11577–11584, doi:10.1029/1999JD900090, 1999.


Devai, I. and DeLaune, R. D.: Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition, Org. Geochem., 23(4), 283–287, doi:10.1016/0146-6380(95)00024-9, 1995.

Fried, A., Klinger, L. F. and III, D. J. E.: Atmospheric carbonyl sulfide exchange in bog microcosms, Geophys. Res. Lett., 20(2), PP. 129–132, doi:199310.1029/93GL00062, 1993.

Minami, K. and Fukushi, S.: Volatilization of carbonyl sulfide from paddy soils treated with sulfur-containing substances, Soil Sci. Plant Nutr., 27(3), 339–345, doi:10.1080/00380768.1981.10431288, 1981.


Carbonic Anhydrase/Leaf Physiology 

Stimler, K., Berry, J. A., Montzka, S. A. and Yakir, D.: Association between Carbonyl Sulfide Uptake and 18Δ during Gas Exchange in C3 and C4 Leaves, Plant Physiol., 157(1), 509–517, doi:10.1104/pp.111.176578, 2011.



Seibt, U., Kesselmeier, J., Sandoval-Soto, L., Kuhn, U. and Berry, J. A.: A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation, Biogeosciences, 7(1), 333–341, doi:10.5194/bg-7-333-2010, 2010.



Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y. and Yakir, D.: Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange, New Phytol., 186(4), 869–878, doi:10.1111/j.1469-8137.2010.03218.x, 2010.

Yonemura, S., Sandoval-Soto, L., Kesselmeier, J., Kuhn, U., Von Hobe, M., Yakir, D. and Kawashima, S.: Uptake of carbonyl sulfide (COS) and emission of dimethyl sulfide (DMS) by plants, Phyton, 45(4), 17–24, 2005.


Schenk, S., Kesselmeier, J. and Anders, E.: How Does the Exchange of One Oxygen Atom with Sulfur Affect the Catalytic Cycle of Carbonic Anhydrase?, Chem. – Eur. J., 10(12), 3091–3105, doi:10.1002/chem.200305754, 2004.



Protoschill-Krebs, G., Wilhelm, C. and Kesselmeier, J.: Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA), Atmos. Environ., 30(18), 3151–3156, doi:10.1016/1352-2310(96)00026-X, 1996.

Protoschill-Krebs, G. and Kesselmeier, J.: Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants, Bot. Acta, 105(3), 206–212, 1992.


Micro-organisms
Ogawa, T., Noguchi, K., Saito, M., Nagahata, Y., Kato, H., Ohtaki, A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda, M., Nyunoya, H. and Katayama, Y.: Carbonyl Sulfide Hydrolase from Thiobacillus thioparus Strain THI115 Is One of the β-Carbonic Anhydrase Family Enzymes, J. Am. Chem. Soc., 135(10), 3818–3825, doi:10.1021/ja307735e, 2013.

Kato, H., Saito, M., Nagahata, Y. and Katayama, Y.: Degradation of ambient carbonyl sulfide by Mycobacterium spp. in soil, Microbiology, 154(1), 249–255, doi:10.1099/mic.0.2007/011213-0, 2008.

Notni, J., Schenk, S., Protoschill‐Krebs, G., Kesselmeier, J. and Anders, E.: The Missing Link in COS Metabolism: A Model Study on the Reactivation of Carbonic Anhydrase from its Hydrosulfide Analogue, ChemBioChem, 8(5), 530–536, doi:10.1002/cbic.200600436, 2007.

Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)., Microbiol. Rev., 60(4), 609–640, 1996.

Ocean/Precipitation
Launois, T., Belviso, S., Bopp, L., Fichot, C. G. and Peylin, P.: A new model for the global biogeochemical cycle of carbonyl sulfide – Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model, Atmos Chem Phys, 15(5), 2295–2312, doi:10.5194/acp-15-2295-2015, 2015.

Kuai, L., Worden, J., Kulawik, S. S., Montzka, S. A. and Liu, J.: Characterization of Aura TES carbonyl sulfide retrievals over ocean, Atmos Meas Tech, 7(1), 163–172, doi:10.5194/amt-7-163-2014, 2014.

Mu, Y. and Xu, Z.: Scavenging of carbonyl sulfide precursor in the atmosphere by precipitation, J. Geophys. Res. Atmospheres, 114(D3), doi:10.1029/2008JD010622, 2009.

Mu, Y., Geng, C., Wang, M., Wu, H., Zhang, X. and Jiang, G.: Photochemical production of carbonyl sulfide in precipitation, J. Geophys. Res. Atmospheres, 109(D13), doi:10.1029/2003JD004206, 2004.

Hobe, M. von, Najjar, R. G., Kettle, A. J. and Andreae, M. O.: Photochemical and physical modeling of carbonyl sulfide in the ocean, J. Geophys. Res., 108, 16 PP., doi:200310.1029/2000JC000712, 2003.

Hobe, M. V., Cutter, G. A., Kettle, A. J. and Andreae, M. O.: Dark production: A significant source of oceanic COS, J. Geophys. Res., 106(C12), PP. 31,217–31,226, doi:200110.1029/2000JC000567, 2001.

Kettle, A. J., Rhee, T. S., von Hobe, M., Poulton, A., Aiken, J. and Andreae, M. O.: Assessing the flux of different volatile sulfur gases from the ocean to the atmosphere, J. Geophys. Res. Atmospheres, 106(D11), 12193–12209, doi:10.1029/2000JD900630, 2001.

Ulshöfer, V. S. and Andreae, M. O.: Carbonyl Sulfide (COS) in the Surface Ocean and the Atmospheric COS Budget, Aquat. Geochem., 3(4), 283–303, doi:10.1023/A:1009668400667, 1997.

Flöck, O. R., Andreae, M. O. and Dräger, M.: Environmentally relevant precursors of carbonyl sulfide in aquatic systems, Mar. Chem., 59(1–2), 71–85, doi:10.1016/S0304-4203(97)00012-1, 1997.

Uher, G. and Andreae, M. O.: Photochemical Production of Carbonyl Sulfide in North Sea Water: A Process Study, Limnol. Oceanogr., 42(3), 432–442, 1997.

Weiss, P. S., Johnson, J. E., Gammon, R. H. and Bates, T. S.: Reevaluation of the open ocean source of carbonyl sulfide to the atmosphere, J. Geophys. Res. Atmospheres, 100(D11), 23083–23092, doi:10.1029/95JD01926, 1995.

Radford-Knȩry, J. and Cutter, G. A.: Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean, Geochim. Cosmochim. Acta, 58(24), 5421–5431, doi:10.1016/0016-7037(94)90239-9, 1994.

Zepp, R. G. and Andreae, M. O.: Factors affecting the photochemical production of carbonyl sulfide in seawater, Geophys. Res. Lett., 21(25), 2813–2816, doi:10.1029/94GL03083, 1994.

Andreae, M. O. and Ferek, R. J.: Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere, Glob. Biogeochem. Cycles, 6(2), 175–183, doi:199210.1029/91GB02809, 1992.

Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical sulfur cycle, Mar. Chem., 30, 1–29, doi:10.1016/0304-4203(90)90059-L, 1990.

The CLAW hypothesis: Charlson, R. J., Warren, S. G., Lovelock, J. E. and Andreae, M. O.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.

Stratosphere

Krysztofiak, G., Té, Y., Catoire, V., Berthet, G., Toon, G.C., Jégou, F., Jeseck, P., and Robert, C.:  Carbonyl sulphide (OCS) variability with latitude in the atmosphere, Atmosphere-Ocean, 53(1), 1-13, doi:10.1080/07055900.2013.876609, 2015.

Brühl, C., Lelieveld, J., Crutzen, P. J. and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos Chem Phys, 12(3), 1239–1253, doi:10.5194/acp-12-1239-2012, 2012.

Hattori, S., Schmidt, J. A., Mahler, D. W., Danielache, S. O., Johnson, M. S. and Yoshida, N.: Isotope Effect n the Carbonyl Sulfide Reaction with O(3P), J. Phys. Chem. A, 116(14), 3521–3526, doi:10.1021/jp2120884, 2012.

Leung, F.-Y. T., Colussi, A. J., Hoffmann, M. R. and Toon, G. C.: Isotopic fractionation of carbonyl sulfide in the atmosphere: Implications for the source of background stratospheric sulfate aerosol, Geophys. Res. Lett., 29(10), 112–1, doi:10.1029/2001GL013955, 2002.

Kjellström, E.: A Three-Dimensional Global Model Study of Carbonyl Sulfide in the Troposphere and the Lower Stratosphere, J. Atmospheric Chem., 29(2), 151–177, doi:10.1023/A:1005976511096, 1998.

Chin, M. and Davis, D. D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 100(D5), 8993–9005, 1995.

Chin, M. and Davis, D. D.: Global sources and sinks of OCS and CS2 and their distributions, Glob. Biogeochem. Cycles, 7(2), 321–337, doi:10.1029/93GB00568, 1993.

Crutzen, P. J.: The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3(2), 73–76, doi:197610.1029/GL003i002p00073, 1976.
This material is based upon work supported by the National Science Foundation under Grant Number 1433257.  
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 
​Copyright © 2015-2024